Panasonic ideas for life ## **AUTOMOTIVE MICRO-ISO RELAY** # **CM RELAYS** mm inch # **FEATURES** #### • Small size: ### 20 mm(L)×15 mm(W)×22 mm(H) .787 inch(L)×.591 inch(L)×.866 inch(H) #### • Wide line-up PC board and Plug-in type, Resistor and diode inside type. 24V DC type is also available. #### • Compact and high-capacity 35A load switching N.O.: 35A 14V DC, N.C.: 20A 14V DC (Sealed type) Min. 5×10^4 N.O.: 35A 14V DC, N.C.: 20A 14V DC (Flux-resistant type) Min. 105 *12V DC type • Micro-ISO type terminals ### TYPICAL APPLICATIONS - Fan motor - Heater - Head lump - Air Compressor - EPS - ABS - Blower fan - · Defogger, etc. # **SPECIFICATIONS** #### Contact | Joinage | | | | | | |--|----------------------------|--|---|--|--| | Туре | | 12 V coil voltage | 24 V coil voltage | | | | Arrangement | | 1 Form A, 1 Form C | | | | | Contact ma | terial | AgSnO₂ type | | | | | Initial contact resistance
(By voltage drop 6 V DC 1 A) | | Max. 15mΩ | | | | | Contact voltage drop | | Max. N.O.: 0.5 V
(at 35 A 14 V DC)
Max. N.C.: 0.3 V
(at 20 A 14 V DC) | Max. N.O.: 0.3 V
(at 15 A 28 V DC)
Max. N.C.: 0.2 V
(at 8 A 28 V DC) | | | | Rating
(resistive
load) | Nominal switching capacity | N.O.: 35 A 14 V
DC
N.C.: 20 A 14 V
DC | N.O.: 15 A 28 V
DC
N.C.: 8 A 28 V DC | | | | | Max. carrying current | N.O.: 20 A
(14 V DC,
at 85°C 185°F)
N.C.: 10 A
(14 V DC,
at 85°C 185°F) | N.O.: 15 A
(28 V DC,
at 85°C 185°F)
N.C.: 8 A
(28 V DC,
at 85°C 185°F) | | | | | Min. switching capacity#1 | 1 A 12 V DC | 1 A 24 V DC | | | | Expected life | Mechanical
(at 120 cpm) | Min. 10 ⁶ | | | | | | Electrical (at rated load) | Flux-resistant type: Min. 10 ^{5*1}
Sealed type: Min. 5 × 10 ⁴ | | | | | Coil | | | | | | #### Coil | | 1.5 W | 1.8 W
2.0 W | | |-------------------------|--------------------|--------------------|--| | Naminal aparating names | 1.7 W | | | | Nominal operating power | (Internal resistor | (Internal resistor | | | | type) | type) | | ^{#1} This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load. #### Characteristics | Max. operating speed
(at nominal switching capacity)15 cpmInitial insulation resistance*2Min. 20 MΩ (at 500 V DC)Initial breakdown voltage*3Between open contacts
Between contacts
and coil500 Vrms for 1 min.Operate time*4
(at nominal voltage) (at 20°C 85°F)Max. 10 msRelease time*4
(at nominal voltage) (at 20°C 85°F)Max. 10 msShock resistanceFunctional*5
Destructive*6Min. 200 m/s² {20G}
Min. 1,000m/s² {100G}Vibration resistanceFunctional10 Hz to 500 Hz, Min. 44.1 m/s² {4.5 G}Conditions for operation, transport and storage*8
(Not freezing and condensing at low temperature)Ambient temp.*9 -40 °C to $+85$ °C -40 °F to $+185$ °FMassApprox. 20g .71oz | Туре | | 24V coil type 12V coil ty | | | |---|-------------------------------------|-----------------|-----------------------------------|--|--| | Between open contacts Between open contacts Between contacts Soo Vrms for 1 min. | | | 15 cpm | | | | Initial breakdown voltage*3 Between contacts and coil Operate time*4 (at nominal voltage) (at 20°C 85°F) Release time*4 (at nominal voltage) (at 20°C 85°F) Shock resistance Functional*5 Destructive*6 Destructive*6 Destructive*7 Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature) Setween contacts 500 Vrms for 1 min. Max. 10 ms Max. 10 ms Max. 15 ms (with diode) Min. 200 m/s² {20G} Min. 1,000m/s² {100G} 10 Hz to 500 Hz, Min. 44.1 m/s² {4.5 G} -40°C to + 85°C -40°F to + 185°F Humidity 5% R.H. to 85% R.H. | Initial insulation resi | stance*2 | Min. 20 MΩ (at 500 V DC) | | | | Ambient temp.*9 and coil Operate time*4 (at nominal voltage) (at 20°C 85°F) Release time*4 (at nominal voltage) (at 20°C 85°F) Shock resistance Functional*5 Destructive*6 Destructive*7 Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature) Max. 10 ms Max. 10 ms Max. 15 ms (with diode) Min. 200 m/s² {20G} Min. 1,000m/s² {100G} 10 Hz to 500 Hz, Min. 44.1 m/s² {4.5 G} -40°C to + 85°C -40°F to + 185°F Humidity 5% R.H. to 85% R.H. | Initial breakdown | | 500 Vrms for 1 min. | | | | (at nominal voltage) (at 20°C 85°F) Max. 10 ms Release time*4 (at nominal voltage) (at 20°C 85°F) Max. 15 ms (with diode) Shock resistance Functional*5 Min. 200 m/s² {20G} Destructive*6 Destructive*6 Functional Min. 1,000m/s² {100G} Vibration resistance Functional Destructive*7 Min. 44.1 m/s² {4.5 G} Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature) Ambient temp.*9 Ambient temp.*9 -40°C to + 85°C -40°F to + 185°F Humidity 5% R.H. to 85% R.H. | voltage*3 | | 500 Vrms for 1 min. | | | | (at nominal voltage) (at 20°C 85°F) Max. 15 ms (with diode) Shock resistance Functional*5 Min. 200 m/s² {20G} Destructive*6 Min. 1,000m/s² {100G} Vibration resistance Functional 10 Hz to 500 Hz, Min. 44.1 m/s² {4.5 G} Destructive*7 10 Hz to 2,000 Hz, Min. 44.1 m/s² {4.5 G} Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature) Ambient temp.*9 -40°C to + 85°C -40°F to + 185°F Humidity 5% R.H. to 85% R.H. | | | Max. 10 ms | | | | Shock resistance Destructive*6 Min. 1,000m/s² {100G} 10 Hz to 500 Hz, Min. 44.1 m/s² {4.5 G} Destructive*7 Destructive*7 Destructive*7 Destructive*7 Ambient temp.*9 Ambient temp.*9 -40°C to + 85°C -40°F to + 185°F Humidity 5% R.H. to 85% R.H. | | | | | | | Destructive*6 Win. 1,000m/s² {100G} 10 Hz to 500 Hz, Min. 44.1 m/s² {4.5 G} Destructive*7 Destructive*7 Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature) Destructive*6 Min. 1,000m/s² {100G} 10 Hz to 500 Hz, Min. 44.1 m/s² {4.5 G} -40°C to + 85°C -40°F to + 185°F Humidity 5% R.H. to 85% R.H. | Charle maniataman | Functional*5 | Min. 200 m/s ² {20G} | | | | Vibration resistance Destructive*7 Min. 44.1 m/s² {4.5 G} | SHOCK TESISIATICE | Destructive*6 | Min. 1,000m/s ² {100G} | | | | Destructive*7 Min. 44.1 m/s² {4.5 G} Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature) Destructive*7 Min. 44.1 m/s² {4.5 G} -40°C to + 85°C -40°F to + 185°F Humidity 5% R.H. to 85% R.H. | Vibration | Functional | , | | | | operation, transport and storage*8 (Not freezing and condensing at low temperature) Ambient temp.*9 -40°F to + 185°F Humidity 5% R.H. to 85% R.H. | resistance | Destructive*7 | | | | | (Not freezing and condensing at low temperature) Humidity 5% R.H. to 85% R.H. | operation, trans- | Ambient temp.*9 | | | | | Mass Approx. 20g .71oz | (Not freezing and condensing at low | Humidity | 5% R.H. to 85% R.H. | | | | | Mass | | Approx. 20g .71oz | | | - *1 At nominal switching capacity, operating frequency: 2s ON, 2s OFF - *2 Measurement at same location as "Initial breakdown voltage" section. - *3 Detection current: 10mA - *4 Excluding contact bounce time. - *5 Half-wave pulse of sine wave: 11 ms; detection time: 10 μs - *6 Half-wave pulse of sine wave: 6 ms *7 Time of vibration for each direction; X, Y, Z direction: 4 hours ^{*8} Refer to 6. Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT (p. 19, Relay Technical Information). *9 Ambient temperature 125°C 257°F type is also considerable on request. Please contact us for details. # **ORDERING INFORMATION** Note: Bulk package: 50 pcs.; Case: 200 pcs. # **TYPES** Packing quantity: Inner 50pcs, Outer 200pcs. | Contact arrangement | Part No. | Coil voltage | Mounting classification | Protective construction | |---------------------|-------------|--------------|-------------------------|-------------------------| | | CM1a-12V | | Diversion to me | Sealed type | | | CM1aF-12V | 10.4.7.0 | Plug-in type | Flux-resistant type | | 1 Form A | CM1a-P-12V | | PC board type | Sealed type | | | CM1aF-P-12V | | | Flux-resistant type | | | CM1-12V | 12 V DC | Plug-in type | Sealed type | | 4.5 | CM1F-12V | | | Flux-resistant type | | 1 Form C | CM1-P-12V | | PC board type | Sealed type | | | CM1F-P-12V | | | Flux-resistant type | | Contact arrangement | Part No. | Coil voltage | Mounting classification | Protective construction | | - | CM1a-24V | | | Sealed type | | 4.5 | CM1aF-24V | 24 V DC | Plug-in type | Flux-resistant type | | 1 Form A | CM1a-P-24V | | PC board type | Sealed type | | | CM1aF-P-24V | | | Flux-resistant type | | 1 Form C | CM1-24V | | Discrete to the second | Sealed type | | | CM1F-24V | | Plug-in type | Flux-resistant type | | | CM1-P-24V | | DO harandana | Sealed type | | | CM1F-P-24V | | PC board type | Flux-resistant type | # COIL DATA (at 20°C 68°F) | Nominal voltage,
V DC | Pick-up voltage,
V DC | Drop-out voltage,
V DC | Nominal current,
mA | Coil resistance, ohm | Nominal operating power, W | Usable voltage range, V DC | |--------------------------|--------------------------|---------------------------|------------------------|----------------------|----------------------------|----------------------------| | 12 | 3 to 7 | 1.2 to 4.2 | 125±10% | 96±10% | 1.5 | 10 to 16 | | 24 | 6 to 14 | 2.4 to 8.4 | 75±10% | 320±10% | 1.8 | 20 to 32 | # DIMENSIONS mm inch #### 1. Micro-ISO Plug-in type (1 Form C) # Schematic (Bottom view) ds_61204_0000_en_cm: 061006J ^{*} Intervals between terminals is measured at A surface level. #### 2. Micro-ISO Plug-in type (1 Form A) mm inch #### Schematic (Bottom view) #### 3. Micro-ISO PC board type (1 Form C) #### Schematic (Bottom view) #### 4. Micro-ISO PC board type (1 Form A) ^{*} Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level. #### Schematic (Bottom view) ^{*} Intervals between terminals is measured at A surface level. ^{*} Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level. # REFERENCE DATA 1-(1). Coil temperature rise (12V type) Sample: CM1F-12V, 3 pcs. Measured portion: Inside the coil Contact carrying current: 20A, 35A Ambient temperature: 85°C 185°F 1-(2). Coil temperature rise (24V type) Sample: CM1F-24V, 4 pcs. Measured portion: Inside the coil Contact carrying current: 0A, 15A Ambient temperature: 85°C 185°F 2. Max. switching capability (Resistive load) 3. Ambient temperature and operating temperature range (12V type) 4. Ambient temperature characteristics (Cold/initial) 5. Distribution of pick-up and drop-out voltage Sample: CM1F-12V, 100pcs. 6. Distribution of operate time Sample: CM1F-12V, 30pcs. * Max. 10ms standard (excluding contact bounce) 7. Distribution of release time Sample: CM1F-12V, 30pcs. * Max. 10ms standard (excluding contact bounce) Without diode 8-(1). Electrical life test (Motor free) Sample: CM1aF-R-12V, 6pcs. Load: Cooling fan motor actual load (free condition) Switching frequency: (ON:OFF = 2s:6s) Ambient temperature: Room temperature #### Circuit Load current waveform Inrush current: 85A, Steady current: 18A, Change of pick-up and drop-out voltage Change of contact resistance 8-(2). Electrical life test (Halogen lamp load) Sample: CM1aF-R-12V, 6pcs. Load: 20A 13.5V DC Switching frequency: (ON:OFF = 1s:14s) Ambient temperature: Room temperature Change of pick-up and drop-out voltage Change of contact resistance # Cautions regarding the protection element #### 1. Part numbers without protection elements #### 1) 12 V models When connecting a coil surge protection circuit to these relays, we recommend a Zener diode with a Zener voltage of 24 V or higher, or a resistor (680 Ω to 1,000 Ω). When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit. 2) 24 V models When connecting a coil surge protection circuit to these relays, we recommend a Zener diode with a Zener voltage of 48 V or higher, or a resistor (2,800 Ω to 4,700Ω). When a diode is connected to the coil in parallel, the release time will slow down and working life may shorten. Before use, please check the circuit and verify that the diode is not connected in parallel to the coil drive circuit. #### 2. Part numbers with diodes These relays use a diode in the coil surge protection element. Therefore, the release time is slower and the working life might be shorter compared to part numbers without protection elements and part numbers with resistors. Be sure to use only after evaluating under actual load conditions. #### 3. Part numbers with resistors This part number employs a resistor in the coil surge protection circuit; therefore, an external surge protection element is not required. In particular, when a diode is connected in parallel with a coil, the revert time becomes slower which could adversely affect working life. Please check the circuit and make sure that a diode is not connected in parallel with the coil drive circuit. # For Cautions for Use, see Relay Technical Information.