

POWER RESISTOR - PR02

FEATURES

- Metal film;
- High power in small package;
- Different leads for different applications;
- Several forming styles are available;
- Defined interruption behavior (fusing time);
- Nonflammable lacquer;
- High stability, reliability and uniformity characteristics;
- Several packing and taping configurations;
- Precision tolerance is available (1%);
- Good performance for pulse applications.

Industry sector	Application segment	End-user equipment
Industrial	Power	Power supplies
	Fower	Motor speed controls
Telecom	Data Communication	Line protection resistor
Telecom	Data Communication	Power supplies
		Amplifiers, Color monitor
Consumer	Sound & Vision	Television,
		Video cassette recorder
	Kitchen Appliances	Blender
	Lighting	Ballast equipment
		Dashboard electronics
		Lighting equipment
Automotive	Electronic Systems	Window/mirror steering
		ABS system, Alarm system
		Airbag, Electronic fuel injection

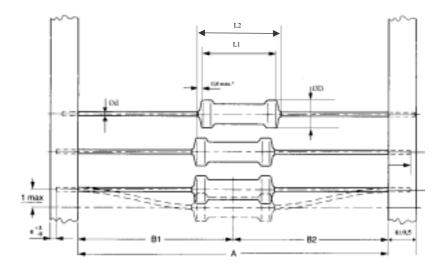
MARKET SEGMENTS AND APPLICATIONS

TECHNOLOGY

A homogenous film of metal alloy is deposited on a high grade ceramic body. After a helical groove has been cut in the resistive layer, tinned connecting wires of electrolytic copper or copper-clad iron are welded to the end-caps . The resistors are coated with a red, nonflammable lacquer, which provides electrical, mechanical and climatic protection. The encapsulation is resistant to all cleaning solvents in accordance with "MIL-STD-202E, method 215" and "IEC 60068-2-45".

QUICK REFERENCE DATA

DESCRIPTION	PR02 (E24	: ±5% serie)	PR02 ±1% (E24/E96 series)	
	Cu-lead	FeCu-lead	Cu-lead	FeCu-lead
Resistance range	$0.33~\Omega$ to $1M\Omega$	1Ω to $1M\Omega$	1Ω to	1MΩ
Maximum dissipation at Tamb 70°C	2W	1.3W	2W	1.3W
Thermal resistance (Rth)	75K/W	115K/W	75K/W	115K/W
Temperature coefficient	≤ ± 250 ppm/⁰C			
Limiting voltage (DC or RMS)	500V			
Rated Voltage ⁽¹⁾	VPn x R			
Basic specification	IEC 60115-1 and 60115-4			
Climatic category (IEC 60068)	55/155/56			
Stability, ∆R/Rmax., after:				
Load Climatic test	$\pm 5\%$ +0.1Ω $\pm 1\%$ +0.1Ω $\pm 3\%$ +0.1Ω $\pm 1\%$ +0.1Ω			+0.1Ω
Resistance to Soldering heat	±1% +	0.05Ω	±0.5%	+0.05Ω


Note:

1- Maximum rated voltage is the "Limiting voltage".

Phoenix do Brasil Ltda.

MECHANICAL DATA

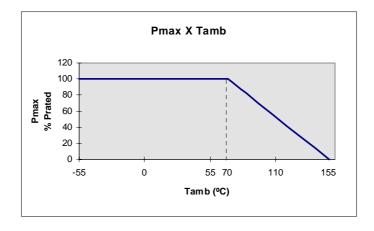
* Max, displacement between any two resistors. Dimensions in mm.

Table 1

Туре	Α	L1 max	L2max	Dmax	B1-B2	φd	Mass per 100 units (g)
PR02	52 +1.5/-0	10	12	3.9	± 1.2	0.8 ± 0.03 Cu *	52
FNUZ	52 +1.5/-0	10	12	3.9	± 1.2	0.6 ± 0.05 FeCu	46
*Proferred type		1		1	1		

*Preferred type Dimensions in mm

MOUNTING


The resistors are suitable for processing on automatic insertion equipment, cutting and bending machines.

ELECTRICAL CHARACTERISTICS

DERATING

The power resistor that the resistor can dissipate depends on the operating temperature

Maximum dissipation (Pmax.) in percentage of rated power as a function of ambient temperature (Tamb.).

PR02

APPLICATION INFORMATION FOR HOT-SPOT AND SOLDER-SPOT

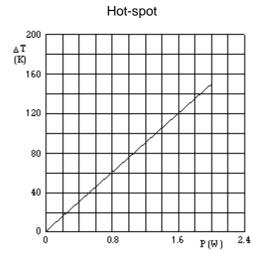


Fig. 1 - ϕ 0.8mm Cu – leads Hot Spot temperature rise (Δ T) as a function of dissipated power. Solder-spot

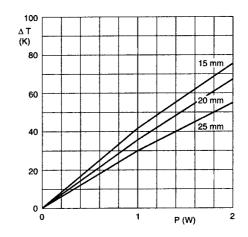


Fig. 2 - ϕ 0.8mm Cu – leads Minimum distance from resistor body to PCB = 1mm Temperature rise (Δ T) at the lead end (Soldering point) as a function of dissipated power at various leads lengths after mounting

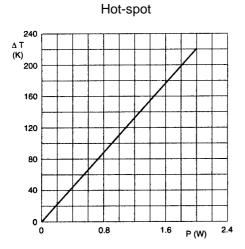


Fig. 3 - ϕ 0.6mm FeCu – leads Hot Spot temperature rise (Δ T) as a function of dissipated power.

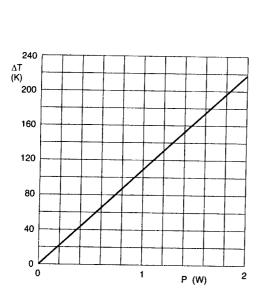
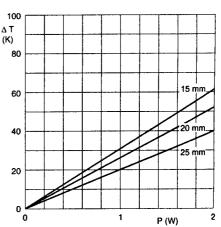



Fig. 5 - ϕ 0.8mm FeCu – leads Hot Spot temperature rise (Δ T) as a function of dissipated power.

Note: The maximum permissible hot-spot temperature is 220°C.

Solder-spot

Fig. 4 - ϕ 0.6mm FeCu – leads Minimum distance from resistor body to PCB = 1mm Temperature rise (Δ T) at the lead end (Soldering point) as a function of dissipated power at various leads lengths after mounting.

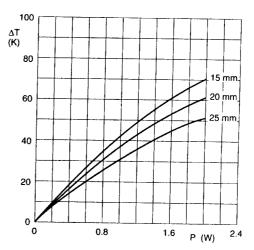
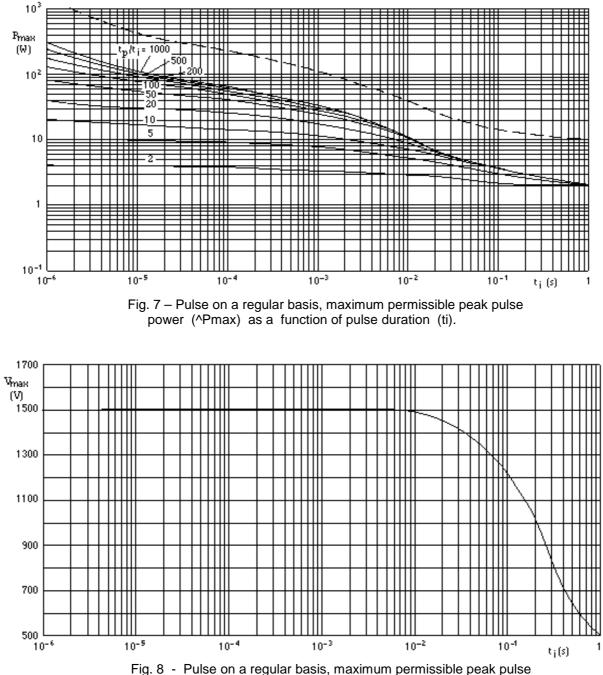



Fig. 6 - ϕ 0.8mm FeCu – leads Minimum distance from resistor body to PCB = 1mm Temperature rise (Δ T) at the lead end (Soldering point) as a function of dissipated power at various leads lengths after mounting.

Phoenix do Brasil Ltda.

PULSE LOADING CAPABILITIES

voltage ([^]Vmax) as a function of pulse duration (ti).

INTERRUPTION CHARACTERISTICS

The graph based on measured data under constant voltage conditions; these data may deviate according to the application.

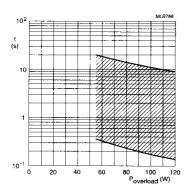


Fig. 9 - Time to interruption as a function of overload power for range: $0R33 \le Rn < 5R$

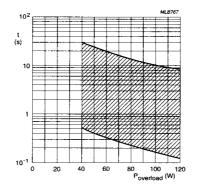


Fig. 10 - Time to interruption as a function of overload power for range: $5R \le Rn < 68R$

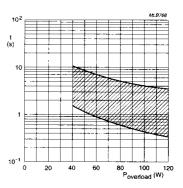


Fig. 11 - Time to interruption as a function of overload power for range: $68R \le Rn < 560R$

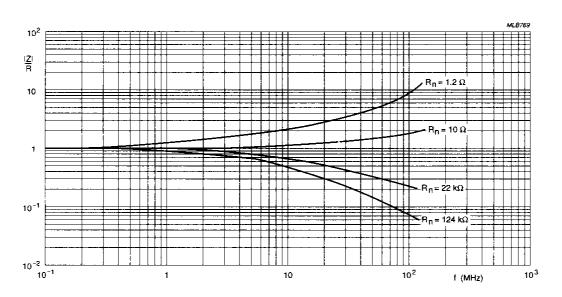
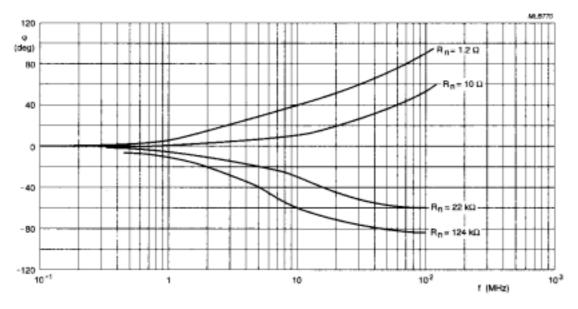
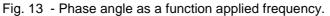




Fig. 12 - Impedance as a function of applied frequency.

MARKING

The nominal resistance and tolerance are marked on the resistor using four or five colored bands in accordance with IEC publication 60062 "color code for fixed resistors".

Standard values of nominal resistance are taken from the E24/E96 series for resistors with a tolerance of $\pm 5\%$ or 1%. The values of the E24/E96 series are in accordance with "IEC publication 60063".

ORDERING INFORMATION

	Oracing coac	indicating is	esisioi iype anu packaying			
			ORDERING CODE 23xx xxx xxxxx			
TYPE LEAD Ø (mm)	TOL	BANDOLIER IN AMMOPACK	BANDOLIER ON REEL			
		(%)	STRAIGHT LEADS			
	(70)	52 mm	52 mm			
			1000 units	5000 units		
PR02 0.8 Cu 0.6 FeCu	1	22 197 1xxxx	06 192 5xxxx			
	0.8 Cu	F	06 198 53xxx	06 198 23xxx		
	0.6 FeCu	5	22 194 54xxx	-		

Table 2. Ordering code indicating resistor type and packaging

Note: For formed types see "Formed Types Specification"

© PHOENIX DO BRASIL LTDA. All rights are reserved. Reproduction whole or in part is Prohibited without the written consent of the copyright owner.

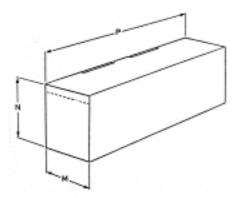
ORDERING CODE

_ . . .

- The resistors have a 12 digit ordering code starting with 23
- The subsequent 6 or 7 digits indicate the resistor type and packaging see table 2.
- For 5% tolerance the remaining 3 digits indicate the resistance value;
 - The first 2 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with table 3.
- For 1% tolerance the remaining 4 digits indicate the resistance value;
 - The first 3 digits indicate the resistance value.

.

- The last digit indicates the resistance decade in accordance with table 3.


Table 3. Last digit of 12NC		
RESISTANCE DECADE (5%)	RESISTANCE DECADE (1%)	LAST DIGIT
0.33 to 0.91Ω	-	7
1 to 9.1Ω	1 to 9.76Ω	8
10 to 91Ω	10 to 97.6Ω	9
100 to 910Ω	100 to 976Ω	1
1 to 9.1kΩ	1 to 9.76kΩ	2
10 to 91kΩ	10 to 97.6kΩ	3
100 to 910kΩ	100 to 976kΩ	4
1MΩ	1ΜΩ	5

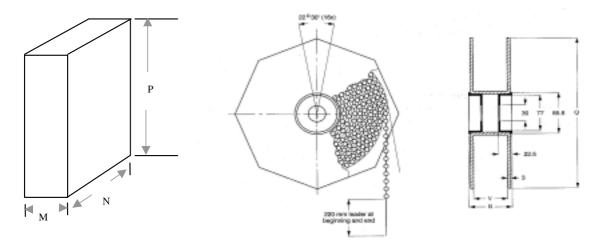
Example:

The ordering code for resistor type PR02 with Cu leads and a value of 750Ω 5%, supplied on a bandolier of 1000 units in ammopack, is: 2306 198 53751

PACKAGING

Bandolier in ammopack

Table 4.


Product	Quantity	М	Ν	Р	Bandolier Width
PR02	1000	78	60	262	52 +1.5/-0
Dimonoiono in mm					

Dimensions in mm

PR02

Bandolier on Reel (optional)

Table J.

PR02 5000 95 361 361 355 78 89 52 +1.5/-0	P able	Product	Quantity	М	Ν	Р	Q	V	R	Bandolier Width
		PR02	5000	95	361	361	355	78	89	52 +1.5/-0

Dimensions in mm

TESTS AND REQUIREMENTS

Essentially all tests are carried out in accordance with the schedule of "IEC publication 60115-1", category LCT/UCT/56 (rated temperature range: Lower category temperature, upper category temperature ; damp heat, long term, 56 days). The testing also covers the requirements specified by EIA and EIAJ.

The tests are carried out in accordance with IEC publication 60068-2, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to "EC 60068-1", subclause 5.3.

In Table 6 the tests and requirements are listed with reference to the relevant clauses of "IEC publications 60115-1 and 60068-2"; a short description of the test procedure is also given. In some instances deviations from the IEC recommendations were necessary for out method of specifying. All soldering tests are performed with mildly activated flux.

IEC IEC 60115-1 60068-2		2 TEST	PROCEDURE	REQUIREMENTS		
CLAUSE	TEST METHOD			PR02 5%	PR02 1%	
4.4.1		Visual examination		No holes; clea dam		
4.4.2		Dimensions (outline)	gauge (mm)	See ta	able 1	
4.5		Resistance	applied voltage (+0/-10%): $R < 10\Omega: 0.1V$ $10\Omega \le R < 100\Omega: 0.3V$ $100\Omega \le R < 1 k\Omega : 1V$ $1k\Omega \le R < 10 k\Omega: 3V$	R - Rnom: max.:±5%	R - Rnom: max.: ± 1%	

PR02

Table 6 Test procedures and requirements

IEC 60115-1	IEC 60068-2	TEST	PROCEDURE	REQUIREMENTS		
CLAUSE TEST METHOD		TEST	PROCEDORE	PR02 5%	PR02 1%	
			10 kΩ <u><</u> R < 100 kΩ: 10V 100 kΩ <u><</u> R < 1MΩ: 25V R = 1MΩ: 50V			
4.29	45 (Xa)	Component solvent resistance	Isopropyl alcohol or H ₂ O followed by brushing in accordance with "MIL 202F"	No visua	I damage	
4.18	20 (Tb)	Resistance to soldering heat	Thermal shock: 3s; 350°C ; 6mm from body	ΔR/Rmax.: ±1% + 0.05Ω	ΔR/Rmax.: ±0.5% +0.05Ω	
4.16	21 (U)	Robustness of Terminations:				
4.16.2	21 (Ua1)	Tensile all samples	load 10N; 10s	Number of fa	ilures:<1x10 ⁻⁶	
4.16.3	21 (Ub)	Bending half number of samples	load 5N; 4 X 90º	Number of fa	illures:<1x10 ⁻⁶	
4.16.4	21 (Uc)	Torsion other half number of samples	3 x 360° in opposite directions		amage 0.5% + 0.05Ω	
4.17	20 (Ta)	Solderability	2s; 235ºC;	Good tinning	g; no damage	
4.7		Voltage proof on insulation	Maximum voltage 500V (RMS) during 1 minute; metal block method	No breakdown on flashove		
4.19	14 (Na)	Rapid change of	30 minutes at LCT and 30 minutes at UCT; 5 cycles	No visual damage		
		temperature		∆R/Rmax.: ±1%+0.05Ω	ΔR/Rmax.: ±0.5% +0.05Ω	
4.22	6 (Fc)	Vibration	Frequency 10 to 500 Hz, displacement 1.5mm or acceleration 10g, three directions; total 6h (3x2h)	No damage ΔR/Rmax.: ±0.5% +0.05Ω		
4.23		Climatic sequence		R _{ins} min	.: 10 ³ ΜΩ	
4.23.3	30 (Db)	Damp heat (accelerated) 1 st cycle				
4.23.6	30 (Db)	Damp heat (accelerated) remaining cycles	6 days; 55°C; 95 to 98% R.H.	ΔR/Rmax.: ± 3% + 0.1Ω	ΔR/Rmax.: ± 1% + 0.1Ω	
4.24.2	3 (Ca)	Damp heat (steady state) (IEC)	56 days; 40 °C; 90 to 95% R.H; loaded with	R _{ins} min	: 10 ³ ΜΩ	
			0.01Pn (IEC steps: 4 to 100V)	ΔR/R max.: ± 3% + 0.1Ω	ΔR/R max.: ± 1% + 0.1Ω	
4.8.4.2		Temperature coefficient	At 20/ LCT /20°C and 20/ UCT / 20°C: (TC ppm/°C)		50ppm	
4.25.1		Endurance (at 70 °C)	1000h loaded with Pn or Vmax 1.5h on and 0.5h off	ΔR/Rmax.: ± 5% + 0.1Ω	ΔR/Rmax.: ± 1% + 0.1Ω	
4.6.1.1		Insulation resistance	Maximum voltage (DC) after 1 minute; metal block method	R _{ins} min	.: 10 ⁴ ΜΩ	
See 2 nd ar "IEC 60115-	mendment to -1".	Pulse Load		See figs	s. 7 and 8	